Particle formation and growth from ozonolysis of α-pinene

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct photolysis of α-pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content.

Primary and secondary organic aerosols (POA and SOA) contain a complex mixture of multifunctional chemicals, many of which are photolabile. Much of the previous work that aimed to understand the chemical evolution (aging) of POA and SOA has focused on the reactive uptake of gas-phase oxidants by particles. By stripping volatile compounds and ozone from α-pinene ozonolysis SOA with three 1-m-lon...

متن کامل

Dependence of particle nucleation and growth on high-molecular-weight gas-phase products during ozonolysis of α-pinene

We report the first time-dependent measurements of high-molecular-weight (up to 700 amu) gas-phase oxidation products from α-pinene ozonolysis in an aerosol chamber under dry and low-NOx conditions. Measurements of products having mole fractions ranging from 10−14 to 10−11 were carried out with a chemical ionization mass spectrometer (the Cluster CIMS). Most products that were correlated with n...

متن کامل

Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene

The yield of particle mass in secondary organic aerosol (SOA) formed by dark ozonolysis was measured for 0.3–22.8 ppbv of reacted α-pinene. Most experiments were conducted using a continuous-flow chamber, allowing nearly constant SOA concentration and chemical composition for several days. For comparison, some experiments were also conducted in batch mode. Reaction conditions were 25C, 40% RH, ...

متن کامل

Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3

The formation and detailed composition of secondary organic aerosol (SOA) from the gas phase ozonolysis of αand β-pinene has been simulated using the Master Chemical Mechanism version 3 (MCM v3), coupled with a representation of gas-to-aerosol transfer of semivolatile and involatile oxygenated products. A kinetics representation, based on equilibrium absorptive partitioning of ca. 200 semivolat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geophysical Research: Atmospheres

سال: 2001

ISSN: 0148-0227

DOI: 10.1029/2001jd900018